Remote Visualization of Complex Phenomena on Very Large Datasets

Berk Geveci (Kitware), Jim Ahrens (LANL)

Objectives

- To understand the 3D evolution of tearing modes (causing plasma instabilities) in simulations of magnetic reconnection
- Challenges
 - Large data size generated by high resolution simulation on 98304 cores
 - 6.4 billion cells,1.5 trillion particles, 57 TB data
 - Only remote access to the supercomputer
 - Lack of dedicated visualization resources

Impact

- Interactive 3D visualization of simulation data
 - Particle data and Mesh data
- Comparison with theoretical expectations
- Rapid exploration due to limited availability of supercomputer to run large simulations
- Scaling ParaView: general purpose data analysis and visualization tool focused on large data

Two isosurfaces showing the structure of particle density (blue) and current density (red).

Accomplishments

- Allowed scientists to remotely analyze and visualize their data when it is not possible to copy locally
- Allowed scientists "to rapidly explore the grid data to understand the 3D evolution of magnetic reconnection"
- As expected, a spectrum of tearing instabilities develops which interact, forming new current sheets and triggering secondary tearing instabilities

